Course Requirements

BS in Mathematics and Computing
RequirementCredit HoursCourses
Wellness2APPH 1040 Scientific Foundations of Health or 
APPH 1050 The Science of Physical Activity and Health or 
APPH 1060 Flourishing: Strategies for Well-being and Resilience
Core IMPACTS  
Institutional Priority3CS 1301 Introduction to Computing
Mathematics and Quantitative Skills4MATH 1552 Integral Calculus
Political Science and US History3HIST 2111 or HIST 2112 or POL 1101 or INTA 1200 or PUBP 3000
Arts, Humanities, and Ethics6Choose from Institute approved Humanities courses
Communicating in Writing3ENGL 1101 English Composition I
3ENGL 1102 English Composition II
Technology, Mathematics, and Sciences2MATH 1551 Differential Calculus
4MATH 1554 Linear Algebra or MATH 1564 Linear Algebra with Abstract Vector Space
8Choose from Institute approved Lab science coursework; PHYS 2211 and PHYS 2212 are strongly encouraged.
Social Sciences9Choose from Institute approved Social Sciences courses
 
Field of Study 3CS 1331 Introduction to Object-Oriented Programming
4MATH 2551 Multivariable Calculus or MATH 2561 Honors Multivariable Calculus
4MATH 2552 Differential Equations or MATH 2562 Honors Differential Equations
4CS 2110 Computer Organization & Programming
3MATH/CS 2740 Foundations of Mathematics and Computing
 
Major Requirements  
All Concentrations 3CS 1332 Data Structures & Algorithm
3MATH 3406 A Second Course on Linear Algebra
3MATH 4317 Analysis I
3MATH/CX 3740 Probability and Statistics for Computing and Machine Learning
Concentration Specific27Given in the following tables for each concentration
Engineering or Science Electives6
Free Electives9 
Ethics Course3CS 3001 Computing, Society and Professionalism
 
Total Credit Hours122 

Concentration Course Information

Theoretical Computer Science and Discrete Math Concentration

Theoretical Computer Science and Discrete Math Concentration
RequirementCredit HoursCourses
Concentration Requirements3MATH 3012 Applied Combinatorics
3CS 2050 Introduction to Discrete Math for Computer Science
or
CS 2051 Honors Discrete Math for Computer Science
3CS 3510 Design and Analysis of Algorithms
or
CS 3511 Algorithm Honors
3CS 4510 Automata and Complexity
3CS 4540 Advanced Algorithms
Concentration Electives 6Choose at least 6 credit hours from List The-A below.
6Choose at least 6 credit hours from List The-B below.
 
Total Credit Hours27 

List The-A Elective Options

All courses below are 3 credit hours.

  • MATH 3236 Statistical Theory
  • MATH 4012 Algebraic Structures in Coding Theory
  • MATH 4022 Introduction to Graph Theory
  • MATH 4107 Introduction to Abstract Algebra I
  • MATH 4108 Introduction to Abstract Algebra II
  • MATH 4150 Introduction to Number Theory
  • MATH 4210 Mathematical Foundations of Data Science
  • MATH 4221 Stochastic Processes I 
  • MATH 4222 Stochastic Processes II
  • MATH 4255 Monte Carlo Methods 
  • MATH 4318 Analysis II 
  • MATH 4580 Linear Programming 
  • MATH/CX 4640 Numerical Analysis I
  • MATH 4641 Numerical Analysis II
List The-B Elective Options

All courses below are 3 credit hours

  • CS 3235 Introduction to Information Security 
  • CS 3600 Introduction to Artificial Intelligence 
  • CS 3790 Introduction to Cognitive Science 
  • CS 4520 Approximation Algorithms
  • CS 4530 Randomized Algorithms
  • CS 4641 Machine Learning 
  • CS 4644 Deep Learning
  • CX 4220 Introduction to High Performance Computing
  • CX 4240 Introduction to Computing for Data Analysis
  • CX 4777 Introduction to Parallel and Vector Scientific Computing
  • ECE 3084 Signals and Systems
  • ECE  3251 Optimization for Information Systems
  • ISYE 4133 Advanced Optimization
Modeling, Simulation, Data, and Applied Math Concentration

Modeling, Simulation, Data and Applied Math Concentration
RequirementCredit HoursCourses
Concentration Requirements3MATH 4347 Partial Differential Equations I
3CX 4220 Introduction to High Performance Computing
3CX 4230 Computer Simulation
3MATH/CX 4640 Numerical Analysis I
3CS 4641 Machine Learning or
CX 4240 Introduction to Computing for Data Analysis or
MATH 4210 Mathematical Foundations of Data Science
Concentration Electives 6Choose at least 6 credit hours from List Mod-A below
6Choose at least 6 credit hours from List Mod-B below
 
Total Credit Hours27 

List Mod-A Electives

All courses below are 3 credit hours

  • MATH 3012 Applied Combinatorics
  • MATH 3236 Statistical Theory
  • MATH 4012 Algebraic Structures in Coding Theory
  • MATH 4022 Intro to Graph Theory
  • MATH 4107 Abstract Algebra I
  • MATH 4210 Mathematical Foundations of Data Science
  • MATH 4221 Stochastic Process I
  • MATH 4222 Stochastic Processes II
  • MATH 4261 Mathematical Statistics I
  • MATH 4280 Introduction to Information Theory
  • MATH 4318 Real Analysis II
  • MATH 4320 Complex Analysis
  • MATH 4431 Introduction to Topology
  • MATH 4441 Differential Geometry
  • MATH 4541 Dynamics and Bifurcations I
  • MATH 4580 Linear Programming
  • MATH 4755 Mathematical Biology
  • MATH 4782 Quantum Information and Quantum Computing
  • MATH/CX 4740 Computational Methods for Simulation and Machine Learning
  • MATH 4211 Advanced Statistical Theory for Machine Learning
  • MATH 4212 Introduction to Stochastic Calculus
List Mod-B Electives

CS 3451 Computer Graphics (3)
CS 3600 Introduction to Artificial Intelligence (3)
CS 4210 Advanced Operating Systems (3)
CS 4476 Intro Computer Vision (3)
CS 4496 Computer Animation (3)
CS 4540 Advanced Algorithms (3)
CS 4550 Scientific Data Processing and Visualization (3)   
CS 4644 Deep Learning (3)
CX 4140 Computational Modeling Algorithms (3) 
CX 4230 Computer Simulation (3)
CX 4232 Simulation, and Military Gaming (3)    
CX 4236 Distributed Simulation Systems (3)
CX 4240 Computing for Data Analysis (3)
CX 4242 Data and Visual Analytics (3)
MATH/CX 4641 Numerical Analysis II (3)
MATH/CX 4741 Inverse Problems (3)   
PHYS 3266 Computational Physics (4)
ECE 4270 Fundamentals of Digital Signal Processing (3)
ECE 4271 Applications of Digital Signal Processing (3)    
ISYE 3044 Simulation Analysis and Design (3)  
ISYE 3133 Engineering Optimization (3)  
ISYE 4133 Advanced Optimization (3)
ISYE 3232 Stochastic manufacturing and service systems (3)   
ISYE 4133 Advanced Optimization (3)  
BIOS 4401 Experimental Design and Statistical Methods in Biology (3)  
EAS 3620 Geochemistry (4)
EAS 4602 Biochemical Cycles (3)  
EAS 4610 Earth System Modeling (3)  
EAS 4630 Physics of the Earth (3)  
EAS 4655 Atmospheric Dynamics (3)

Mathematical Intelligence and Data Science Concentration

Mathematical Intelligence and Data Science Concentration
RequirementCredit HoursCourses
 Concentration Requirements3CS 3600 Introduction to Artificial Intelligence 
3CS 3630 Robotics and Perception or
CS 3790 Introduction to Cognitive Science or
PSY 3040 Sensation and Perception
3CS 4641 Machine Learning or
CX 4240 Introduction to Computing for Data Analysis or
MATH 4210 Mathematical Foundations of Data Science
3CS 3510 Design and Analysis of Algorithms or
CS 3511 Algorithm Honors or
CX 4140 Computational Modeling Algorithms 
3MATH/CX 4740 Computational Methods for Simulation and Machine Learning
Concentration Electives 6Choose 6 credit hours from List Int-A below
6Choose at least 6 credit hours from List Int-B below
 
Total Credit Hours27 

List Int-A Electives

All courses below are 3 credit hours

  • MATH 3012 Applied Combinatorics
  • MATH 3236 Statistical Theory
  • MATH 4012 Algebraic Structures in Coding Theory
  • MATH 4022 Introduction to Graph Theory
  • MATH 4107 Abstract Algebra I
  • MATH 4221 Stochastic Process I
  • MATH 4222 Stochastic Processes II
  • MATH 4261 Mathematical Statistics I
  • MATH 4280 Introduction to Information Theory
  • MATH 4318 Real Analysis II
  • MATH 4320 Complex Analysis
  • MATH 4347 Partial Differential Equations I
  • MATH 4431 Introduction to Topology
  • MATH 4441 Differential Geometry
  • MATH 4541 Dynamics and Bifurcations I
  • MATH 4580 Linear Programming
  • MATH 4755 Mathematical Biology
  • MATH 4782 Quantum Information and Quantum Computing
  • MATH 4211 Advanced Statistical Theory for Machine Learning
  • MATH 4212 Introduction to Stochastic Calculus
  • MATH 4213 Introduction to Geometric Methods in Machine Learning
  • MATH 4214 Introduction to Measure Transport and Generative Modeling
List Int-B Electives
  • CS 3451 Computer Graphics (3)  
  • CS 4210 Advanced Operating Systems (3)    
  • CS 4476 Intro Computer Vision (3)
  • CS 4496 Computer Animation (3) 
  • CS 4510 Automata and Complexity Theory (3) 
  • CS 4540 Advanced Algorithms (3)
  • CS 4550 Scientific Data Processing and Visualization (3)   
  • CS 4616 Pattern Recognition (3) 
  • CS 4635 Knowledge-based AI (3)  
  • CS 4644 Deep Learning (3) 
  • CS 4646 Machine Learning for Trading (3) 
  • CS 4649 Robot Intelligence (3)  
  • CS 4731 Game AI (3)  
  • CS 4650 Natural Language and Processing (3)  
  • CX 4220 Introduction to High Performance Computing (3)  
  • CX 4230 Computer Simulations (3)
  • CX 4232 Simulation, and Military Gaming (3)  
  • CX 4236 Distributed Simulation Systems (3)   
  • CX 4242 Data and Visual Analytics (3)
  • CX/Math 4640 Numerical Analysis I (3) 
  • CX 4641 Numerical Analysis II (3) 
  • CX 4777 Vector and Parallel Scientific Computing (3)     
  • MATH/CX 4741 Inverse Problems (3)  
  • PHYS 3266 Computational Physics (4)   
  • ECE 4270 Fundamentals of Digital Signal Processing (3)    
  • ECE 4271 Applications of Digital Signal Processing (3)    
  • ISYE 3044 Simulation Analysis and Design (3)   
  • ISYE 3133 Engineering Optimization (3) 
  • ISYE 4133 Advanced Optimization (3)
  • ISYE 3232 Stochastic manufacturing and service systems (3)   
  • BIOS 4401 Experimental Design and Statistical Methods in Biology (3)   
  • EAS 3620 Geochemistry (4)   
  • EAS 4602 Biochemical Cycles (3)   
  • EAS 4610 Earth System Modeling (3)   
  • EAS 4630 Physics of the Earth (3)   
  • EAS 4655 Atmospheric Dynamics (3)